

UFs of LOW FORMALDEHYDE EMISSION

- Not a yet a Problem in Europe, BUT
- JAPAN F*** standard is far more severe
- If JAPAN's F**** spreads to other countries are there ways to satisfy easily the standards, or better?:
- the answer is YES, with a variety of different technologies, new and/or old.

<u>Technologies to decrease/eliminate formaldehyde</u> <u>content and emission</u>

- Phenol-formaldehyde (PF) and phenol-ureaformaldehyde (PUF) resins
- UF/isocyanate, MUF/isocyanate, PF/isocyanate
- MUF resins of low formaldehyde content
- Tannin adhesives without formaldehyde
- isocyanates
- M, U and MU resins with non-toxic, non volatile aldehyde.
- New Entrys

MOST OF THESE RESINS
ALREADY EXIST
AND
ARE ALREADY USED
INDUSTRIALLY TO-DAY

AND UF RESINS?

- UF resins of formaldehyde emission low enough to satisfy F**** can be produced. It seems one major adhesive manufacturer already produces them for the Japanese market
- But they are more expensive and higher amounts used
- And Japanese standard intends tightening further formaldehyde emission regulation; towards an effective formaldehyde emission ban? (note, <u>not</u> a ban of formaldehyde).

IF JAPAN'S F**** TAKES HOLD

- ONLY PF RESINS, PUF, hybrid PF/MDI, UF/MDI resins, top range MUF resins and Tannin adhesives WILL SURVIVE SHORT TO MEDIUM TERM
- NEW RESINS AND TECHNOLOGIES WILL PENETRATE MORE DEEPLY THE MARKET. AMONG THEM, BUT NOT ONLY, NATURAL ADHESIVES AND SOME OF THE ABOVE
- ISOCYANATES ALONE MIGHT HAVE EVENTUALLY THE SAME POLLUTION PROBLEMS OF FORMALDEHYDE

FAST-CURING PF RESINS

- To-day as fast pressing as UF and MUF by
- 1. use of ester accelerators
- 2. alkaline setting PUF resins
- 3. alkaline setting PF/MDI hybrid resins
- Extremely low emission as these resins are completely stable

HYBRID ISOCYANATE RESINS

by DECREASE/ELIMINATION OF TOXIC
-NCO GROUPS IN ISOCYANATES

• BY CO-REACTION OF ISOCYANATES WITH TRADITIONAL WATER-BORN ADHESIVES

Melamine and Urea resins without any formaldehyde

- A major chemical group has developed M and U formulations based on a non-toxic, non-volatile aldehyde.
- Press time is still slower but will be improved
- This aldehyde is still relatively expensive, but if industrial demand increases dramatic shifts in prices will result

SHIFT TO NATURAL ADHESIVES

- Tannin Adhesives NEW TECHNOLOGIES (not the old ones)
- Protein Adhesives
- Carbohydrate Adhesives
- Unsaturated Oils Adhesives
- Hybrid glyoxylated lignin adhesives

TANNIN ADHESIVES 1. IMPROVEMENT OF TRADITIONAL SYSTEMS 2. NEW HARDENERS 3. AUTOCONDENSATION

BONDING BY TANNINS AUTOCONDENSATION

ENVIRONMENT FRIENDLY GLUING WITHOUT ANY ALDEHYDE

ALTERNATIVE HARDENERS

- Methylolated Nitroparaffins, i.e. Trishydroxymethyl nitromethane
- glyoxal
- Hexamethylenetetramine (HEXAMINE)

IN PRESENCE OF FAST-REACTING
COMPOUNDS <u>HEXAMINE</u> IS <u>NOT</u> A
FORMALDEHYDE-YIELDING
COMPOUND

- In presence of MELAMINE
- In presence of RESORCINOL
- In presence of TANNINS

PROTEIN ADHESIVE (SOY)

Properties of soy-PF40 and commercial PF random strand laboratory panels^a

	Density (kg/m³)	Thickness swell (%)				Internal bond (MPa)	
Face resin		2-h Boil		24-h Cold water		Dry	Wet
PF control	677	62.8	(4.8)	15.2	(1.5)	0.60	0.06
Soy-PF40	696	65.1	(3.6)	14.5	(1.7)	0.62	0.06

CARBOHYDRATE ADHESIVES

- As modifiers of existing PF and UF adhesives
- By forming degradation compounds that can be used to form resins for adhesives: i.e.FURANIC RESINS (but furanic monomers are toxic)
- Directly as wood Adhesives: i.e.Liquefied Wood (phenol present)

UNSATURATED OILS

- Epoxidized unsaturated oils: acceptable results for panels but pressing times are far too long. They are relatively expensive
- Cashew nut shell liquid

Hybrid Glyoxylated Lignin Adhesives

- Non-traditional technology
- Must watch out not to be drawn in traditional lignin/PF resins
- Hybrid MDI/PF/glyoxylated lignin and MDI.glyoxylated lignin adhesives, with lignin up to 65% of total
- glyoxal is classified as non toxic (LD50 > 7000 mg/kg) and non-volatile
- Pressing times industrially significant

RESULTS - PARAMETERS										
Welding Time (s)	Welding Pressure (MPa)	Holding Time (s)	Holding Pressure (MPa)	Water spray (g/mm²)	Number of specimens tested	Tensile Strength (MPa)				
3				No		3.64 ± 1.3				
3				No		2.26 ± 1.8				
3				No		9.40 ± 1.2				
3	1.3			No	10	10.45 ± 0.9				
3				yes		10.37 ± 1.0				
4	1.3		1.3	No	10	1.18 ± 0.4				
4				No		0.86 ± 0.2				
4				No		8.78 ± 0.8				
4						6.41 ± 1.2				
4				yes		8.47 ± 0.8				
5				No		0.82 ± 0.3				
5				No		0.51 ± 0.2				
5				No		7.54 ± 0.8				
5				No		4.55 ± 1.3				
5				yes		4.44 ± 1.2				

BUT ONLY FOR JOINING

- Solid Wood to Solid Wood
- Solid Wood to Wood Panel
- Wood panel to Wood Panel
- CANNOT BE USED FOR BOARDS

Dowel Welding Test Grain Wood Dowel type diameter rate (mm) (rpm) holding time (N) Welding Best T+R Beech Fluted groove 9 1200 400mm/min > 3134* combination PVAc control T+R Beech Fluted groove 10 0 24 hours > 3190 dowel shaft breaks outside welded area in all cases. R = radial section. T = tangential section

Conclusions

- Accelerated PFs, PUFs resins
- Mixed PF/pMDI, UF/pMDI, PUF/pMDI
- Top of the range MUFs
- M and U resins with other aldehyde
- · New adhesives, as yet unknown
- Wood Welding without adhesives
- Natural adhesives
 - tannin autocondensation
 - hexamine (for synthetic adh. too), and other hardeners
 - protein adhesives
 - carbohydrate adhesives
 - Unsaturated oil adhesives

THANK YOU

FOR YOUR KIND ATTENTION